thumbnail image
Home/NewsResearch labsMembersPublicationsDatasetsGrantsCollaborationsMediaPositions/Contact

 

Ulbert | Lab

Home/NewsResearch labsMembersPublicationsDatasetsGrantsCollaborationsMediaPositions/Contact
  • Home/NewsResearch labsMembersPublicationsDatasetsGrantsCollaborationsMediaPositions/Contact
    Home/NewsResearch labsMembersPublicationsDatasetsGrantsCollaborationsMediaPositions/Contact
    Home/NewsResearch labsMembersPublicationsDatasetsGrantsCollaborationsMediaPositions/Contact
    • Home/News
    • Research labs
    • Members
    • Publications
    • Datasets
    • Grants
    • Collaborations
    • Media
    • Positions/Contact
    • Search
      • Visual systems neuroscience lab

        Multi-modal investigation of the complete visual pathway (retina, LGN and visual cortex)

        in rat, cat and human samples both in vitro and in vivo.

        Advances in machine vision are indisputable, still the mammalian visual system outperforms the best computers in every moment. The main interest of our lab is to understand the circuits underlying visual computations in the mammalian visual system in order to inspire better machine-vision architectures and algorithms. The first few decades of modern neuroscience witnessed major discoveries on how visual information is processed and distributed in the feline and primate brain.

        The computation of visual motion has been one of the most studied subjects in experimental and computational neuroscience. Hubel and Wiesel discovered cells sensitive to the direction of motion in the feline visual cortex whereas Barlow and Lewick demonstrated that direction selective cells exist in the rabbit retina. After the late 2000s, the mouse became the primary model in neuroscience due to the ever-growing availability of genetic tools. Whether and how the retinal and cortical forms of motion computation are related remained unanswered.

        We used transgenic mouse models to show that in mice cortical direction selectivity depends on retinal computation of motion direction primarily along posterior direction of motion. Our experiments also revealed that circuits downstream to the retina are able to compute the direction of motion when all retinal motion-direction computations have been disrupted. Our current efforts focus on establishing genetic circuit interrogation tools in high-visual acuity non-rodent species. We collaborate with experimentalists and theoreticians to reveal how the visual system of non-rodent species works and develops. Our lab is multidisciplinary welcoming both experimentalist and theory-oriented minds.

      • Members

        • Dániel Hillier, PhD (Research associate, group leader)
        • Domonkos Horváth, MSc (PhD candidate)
        • Beatrix Kovács, MSc (PhD Student)
        • Barbara Varga, BSc (Animal facility and behavior)
        • Angela Dizon, BSc (MSc student)
        • Ábel Petik (BSc student)
        • Klaudia Csikós (BSc student)
        • Csaba Kiss (Assistant)
        • Fanni Veres (Assistant)
        • Sarolt Kinga Gintner (Assistant)
           
        • In collaboration with:
          Arnold Szabó, PhD (Semmelweis Retina Lab, Budapest, HU),
          Ákos Kusnyerik, PhD, (PPKE-ITK, Budapest, HU)
          Balázs Barkóczi, PhD (Femtonics Ltd., HU),
          Márton Balogh, Béla Völgyi Lab (Szentágothai RC, Univ. Pécs, HU)
          Botond Roska, PhD (IOB, Friedrich Miescher Institute Basel, Switzerland)

      • Lab Facilities

        • Two-photon laser scanning microscope (Femtonics/Olympus)

        • Coherent Chameleon Ultra II femtosecond pulse lasers (galvo and resonant)

        • Confocal laser scanning microscope (Zeiss LSM 710)

        • Access to light-sheet and advanced two-photon microscopes in collaborating labs.

        • Fiber photometry

        • Wide-field functional imaging

        • Functional ultrasound

      • Team publications

        Selected publications

        Please visit our Publications page for the full list.

         

        • D Nelidova, RK Morikawa, CS Cowan, Z Raics, D Goldblum, HPN Scholl, T Szikra, A Szabo, D Hillier and B Roska. Restoring light sensitivity using tunable near-infrared sensors. SCIENCE, 368(6495), 1108-1113, 2020. IF: 41.04 , Q1/D1
           
        • B Barsy, K Kocsis, A Magyar, Á Babiczky, M Szabó, JM. Veres, D Hillier, I Ulbert, O Yizhar and F Mátyás Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior NATURE NEUROSCIENCE, 2020. (in press) IF: 21.126, Q1/D1
           
        • Voigt FF, Kirschenbaum D, Platonova E, Pagès S, Campbell RAA, Kastli R, Schaettin M, Egolf L, van der Bourg A, Bethge P, Haenraets K, Frézel N, Topilko T, Perin P, Hillier D, Hildebrand S, Schueth A, Roebroeck A, Roska B, Stoeckli ET, Pizzala R, Renier N, Zeilhofer HU, Karayannis T, Ziegler U, Batti L, Holtmaat A, Lüscher C, Aguzzi A, Helmchen F. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. (2019) NATURE METHODS (in press) IF: 28.467, Q1/D1
           
        • Antonia Drinnenberg, Felix Franke, Rei K. Morikawa, Josephine Jüttner, Daniel Hillier, Peter Hantz, Andreas Hierlemann, Rava Azeredo da Silveira, Botond Roska. How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse. (2018) NEURON, 99, 1, 117-134.e11. IF: 14.40, Q1/D1
           
        • Rajib Schubert, Stuart Trenholm Kamill Balint, Georg Kosche, Cameron S Cowan, Manuel A Mohr , Martin Munz, David Martinez-Martin, Gotthold Fläschner, Richard Newton, Jacek Krol, Brigitte Gross Scherf, Keisuke Yonehara, Adrian Wertz, Aaron Ponti, Alexander Ghanem, Daniel Hillier, Karl-Klaus Conzelmann, Daniel J Müller and Botond Roska. Virus stamping for targeted single-cell infection in vitro and in vivo. (2018) NATURE BIOTECHNOLOGY, 36(1), 81. IF: 31.86, Q1/D1
           
        • Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, Raics Z, Katona G, Juettner J, Hierlemann A, Rozsa B, Roska B. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. (2017) NATURE NEUROSCIENCE, 20(7), 960. IF: 19.91, Q1/D1

      © 2021 Ulbert | Lab

        Find Us
        Email
        Phone
        MTA TTK
      All Posts
      ×
      Cookie Use
      We use cookies to ensure a smooth browsing experience. By continuing we assume you accept the use of cookies.
      Learn More